
Numerical Methods for Solving Systems of

Nonlinear Equations

by

Courtney Remani

A project submitted to the Department of

Mathematical Sciences in conformity with the requirements

for Math 4301 (Honour’s Seminar)

Lakehead University

Thunder Bay, Ontario, Canada

copyright c©(2012-2013) Courtney Remani

Abstract

This Honours Seminar Project will focus on the numerical methods involved in solv-
ing systems of nonlinear equations. First, we will study Newton’s method for solving
multivariable nonlinear equations, which involves using the Jacobian matrix. Second, we
will examine a Quasi-Newton which is called Broyden’s method; this method has been
described as a generalization of the Secant Method. And third, to s solve for nonlin-
ear boundary value problems for ordinary differential equations, we will study the Finite
Difference method. We will also give an application of Newton’s method and the Finite
Difference method. Using the computer program Matlab, we will solve a boundary value
problem of a nonlinear ordinary differential system.

i

Acknowledgements

I would like to acknowledge and thank everyone who has been involved with this
project. I would like to express my sincere gratitude to my supervisor Dr. Liping Liu.
Without her knowledge, direction, guidance, and all of her help, this project would not
have been achieveable. I would also like to show a great deal of appreciation to my project
coordinator, Dr. Adam Van Tuyl. He has been a great professor to me over the years. I
would also like to acknowledge how thankful I am for my Mom and Dad. Without their
unconditional love and support, and always believing in me throughout the years, I would
not have been able to achieve a lot of my goals here at Lakehead University.

ii

Contents

Abstract i

Acknowledgements ii

Chapter 1. Introduction 2

Chapter 2. Preliminaries 3

Chapter 3. Newton’s Method 7

Chapter 4. Broyden’s Method 15

Chapter 5. Finite-Difference Method 18

Chapter 6. Matlab Application 24

Chapter 7. Conclusion 29

Appendix 31

Bibliography 35

iii

CHAPTER 1

Introduction

Over the years, we have been taught on how to solve equations using various al-
gebraic methods. These methods include the substitution method and the elimination
method. Other algebraic methods that can be executed include the quadratic formula
and factorization. In Linear Algebra, we learned that solving systems of linear equations
can be implemented by using row reduction as an algorithm. However, when these meth-
ods are not successful, we use the concept of numerical methods.

Numerical methods are used to approximate solutions of equations when exact
solutions can not be determined via algebraic methods. They construct successive ap-
proximations that converge to the exact solution of an equation or system of equations.
In Math 3351, we focused on solving nonlinear equations involving only a single vari-
able. We used methods such as Newton’s method, the Secant method, and the Bisection
method. We also examined numerical methods such as the Runge-Kutta methods, that
are used to solve initial-value problems for ordinary differential equations. However these
problems only focused on solving nonlinear equations with only one variable, rather than
nonlinear equations with several variables.

The goal of this paper is to examine three different numerical methods that are
used to solve systems of nonlinear equations in several variables. The first method we
will look at is Newton’s method. This will be followed by Broyden’s method, which is
sometimes called a Quasi-Newton method; it is derived from Newton’s method. Lastly, we
will study the Finite Difference method that is used to solve boundary value problems of
nonlinear ordinary differential equations. For each method, a breakdown of each numerical
procedure will be provided. In addition, there will be some discussion of the convergence
of the numerical methods, as well as the advantages and disadvantages of each method.
After a discussion of each of the three methods, we will use the computer program Matlab
to solve an example of a nonlinear ordinary differential equation using both the Finite
Diffference method and Newton’s method.

1

CHAPTER 2

Preliminaries

In this section, we present the definitions and terms that will be used throughout the
project will be presented.

§2.1 A system of nonlinear equations

Definition 2.1. A function f : Rn → R is defined as being nonlinear when it does
not satisfy the superposition principle that is

f(x1 + x2 + ...) 6= f(x1) + f(x2) + ...

Now that we know what the term nonlinear refers to we can define a system of non-
linear equations.

Definition 2.2. A system of nonlinear equations is a set of equations as the following:

f1(x1, x2, ..., xn) = 0,

f2(x1, x2, ..., xn) = 0,

...

fn(x1, x2, ..., xn) = 0,

where (x1, x2, ..., xn) ∈ Rn and each fi is a nonlinear real function, i = 1, 2, ..., n.

Example 2.3. Here is an example of a nonlinear system from Burden and Faires in
[3]:

3x1 − cos(x2x3)−
1

2
= 0

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0 (2.1)

e−x1x2 + 20x3 +
10π − 3

3
= 0

In this article we will use the term root or solution frequently to describe the final
result of solving the systems.

Definition 2.4. A solution of a system of equations f1, f2, ..., fn in n variables is a
point (a1, ..., an) ∈ Rn such that f1(a1, ..., an) = · · · = fn(a1, ..., an) = 0.

2

Chapter 2. Preliminaries 3

Because systems of nonlinear equations can not be solved as nicely as linear systems,
we use procedures called iterative methods.

Definition 2.5. An iterative method is a procedure that is repeated over and over
again, to find the root of an equation or find the solution of a system of equations.

Definition 2.6. Let F be a real function from D ⊂ Rn to Rn. If F(p) = p, for some
p ∈ D, then p is said to be a fixed point of F.

§2.2 Convergence

One of the things we will discuss is the convergence of each of the numerical
methods.

Definition 2.7. We say that a sequence converges if it has a limit.

Definition 2.8. Let pn be a sequence that converges to p, where pn 6= p. If constants
λ, α > 0 exist such that

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ.

Then it is said that pn converges to p of order α with a constant λ.

There are three different orders of convergences.

Definition 2.9. A sequence pn is said to be linearly convergent if pn converges to p
with order α = 1, for a constant λ < 1 such that

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ

Definition 2.10. A sequence pn is said to be quadratically convergent if pn converges
to p with order α = 2 such that

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ

Definition 2.11. A sequence pn is said to be superlinearly convergent if

lim
n→∞

|pn+1 − p|
|pn − p|

= 0

Chapter 2. Preliminaries 4

Remark 2.12. The value of α measures how fast a sequence converges. Thus the
higher the value of α is, the more rapid the convergence of the sequence is. In the case
of numerical methods, the sequence of approximate solutions is converging to the root. If
the convergence of an iterative method is more rapid, then a solution may be reached in
less interations in comparison to another method with a slower convergence

§2.3 Jacobian Matrix

The Jacobian matrix, is a key component of numerical methods in the next section.

Definition 2.13. The Jacobian matrix is a matrix of first order partial derivatives

J(x) =

∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

... · · · ...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)

 .
Example 2.14. If we take the system from Example 2.3 we are able to obtain the

following Jacobian Matrix:

J(x) =

 3 x3 sin(x2x3) x2 sin(x2x3)
2x1 −162(x2 + 0.1) cosx3

−x2e−x1x2 −x1e−x1x2 20

§2.4 Hessian Matrix

The Hessian matrix, will be discussed in a future proof.

Definition 2.15. The Hessian matrix is a matrix of second order partial derivatives

H =
[

∂2f
∂xi∂xj

]
ij

such that

H(x) =

∂2f1
∂x21

∂2f1
∂x1∂x2

· · · ∂2f1
∂x1∂xn

∂2f2
∂x2∂x1

∂2f2
∂x22

· · · ∂2f2
∂x2∂xn

...
... · · · ...

∂2fn
∂xn∂x1

∂2fn
∂xn∂x2

· · · ∂2fn
∂x2n

 .
§2.5 Norms of Vectors

Let x ∈ Rn where

x =

x1
x2
...
xn

.

Chapter 2. Preliminaries 5

Definition 2.16. A vector norm on Rn is a function, || · ||, from Rn into R that has
the following properties:

(1) ||x|| ≥ 0 for all x ∈ Rn,
(2) ||x|| = 0 if and only if x = 0,
(3) ||αx|| = |α|||x|| for all α ∈ R and x ∈ Rn,
(4) ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ Rn

There are two types of vector norms we will discuss, the l2 and l∞ norms.

Definition 2.17. The l2 norm for the vector x is called the Euclidean norm because
it represents the length of the vector denoted by

||x|| = ||x||2 =
√
x21 + x22 + · · ·+ x2n

Definition 2.18. The l∞ norm represents the absolute value of the largest component
in the vector x. It is denoted by

||x||∞ = max
1≤i≤n

|xi|.

The following is an example demonstrating the vector norms.

Example 2.19. The vector

x =

−2
−1
1
3

has vector norms

||x||2 =
√

(−2)2 + (−1)2 + (1)2 + (3)2 =
√

15

||x||∞ = max (| − 2|, | − 1|, |1|, |3|) = 3

In the next couple of sections, we will examine three different numerical methods
that will apply the terms we discussed in this section. These methods include: Newton’s
method, Broyden’s method, and the Finite Difference method.

CHAPTER 3

Newton’s Method

Newton’s method is one of the most popular numerical methods, and is even referred
by Burden and Faires [3] as the most powerful method that is used to solve for the equation
f(x) = 0. This method originates from the Taylor’s series expansion of the function f(x)
about the point x1:

f(x) = f(x1) + (x− x1)f ′(x1) +
1

2!
(x− x1)2f ′′(x1) + · · · (3.1)

where f , and its first and second order derivatives, f ′ and f ′′ are calculated at x1. If we
take the first two terms of the Taylor’s series expansion we have:

f(x) ≈ f(x1) + (x− x1)f ′(x1). (3.2)

We then set (3.2) to zero (i.e f(x) = 0) to find the root of the equation which gives us:

f(x1) + (x− x1)f ′(x1) = 0. (3.3)

Rearranging the (3.3) we obtain the next approximation to the root, giving us:

x = x2 = x1 −
f(x1)

f ′(x1)
(3.4)

Thus generalizing (3.4) we obtain Newton’s iterative method:

xi = xi−1 −
f(xi−1)

f ′(xi−1)
, i ∈ N (3.5)

where xi → x (as i→∞), and x is the approximation to a root of the function f(x).

Remark 3.1. As the iterations begin to have the same repeated values i.e. as
xi = xi+1 = x this is an indication that f(x) converges to x. Thus xi is the root of
the function f(x).

Proof of Remark 3.1
Since xi+1 = xi − f(xi)

f ′(xi)
and if xi = xi+1, then

xi = xi −
f(xi)

f ′(xi)

6

Chapter 3. Newton’s Method 7

This implies that
f(xi)

f ′(xi)
= 0

and thus f(xi) = 0. �

Another indicator that xi is the root of the function is if it satisfies that |f(xi)| < ε,
where ε > 0 is a given tolerance.

However, (3.5) can only be used to solve nonlinear equations involving only a single
variable. This means we have to take (3.5) and alter it, in order to use it to solve a set of
nonlinear algebraic equations involving multiple variables

We know from Linear Algebra that we can take systems of equations and express those
systems in the form of matrices and vectors. With this in mind and using Definition 2.2,
we can express the nonlinear system as a matrix with a corresponding vector. Thus, the
following equation is derived:

x(k) = x(k−1) − J(x(k−1))−1F(x(k−1))

where k = 1, 2, ..., n represents the iteration, x ∈ Rn, F is a vector function, and J(x)−1 is
the inverse of the Jacobian matrix . This equation represents the procedure of Newton’s
method for solving nonlinear algebraic systems. However, instead of solving the equation
f(x) = 0, we are now solving the system F(x) = 0. We will now go through the equation
and define each component.

(1) Let F be a function which maps Rn to Rn.

F(x1, x2, ..., xn) =

f1(x1, x2, ..., xn)
f2(x1, x2, ..., xn)

...
fn(x1, x2, ..., xn)

where fi : Rn → R.
(2) Let x ∈ Rn. Then x represents the vector

x =

x1
x2
...
xn

Chapter 3. Newton’s Method 8

where xi ∈ R and i = 1, 2, . . . , n.
(3) From Definition 2.13 we know that J(x) is the Jacobian matrix. Thus J(x)−1 is

J(x)−1 =

∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

... · · · ...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)

−1

Now we describe the steps of Newton’s method:

Step 1:

Let x(0) = (x
(0)
1 , x

(0)
2 , ..., x

(0)
n) be a given initial vector.

Step 2:
Calculate J(x(0)) and F(x(0)).

Step 3:
We now have to calculate the vector y(0), where

y =

y1
y2
...
yn

In order to find y(0), we solve the linear system J(x(0))y(0) = −F(x(0)), using Gaussian
Elimination.

Remark 3.2. Rearranging the system in Step 3, we get that y(0) = −J(x(0))−1F(x(0)).
The significance of this is that, since y(0) = −J(x(0))−1F(x(0)), we can replace−J(x(0))−1F(x(0))
in our iterative formula with y(0). This result will yield that

x(k) = x(k−1) − J(x(k−1))−1F(x(k−1)) = x(k−1) − y(k−1)

Step 4:
Once y(0) is found, we can now proceed to finish the first iteration by solving for x(1).
Thus using the result from Step 3, we have that

Chapter 3. Newton’s Method 9

x(1) = x(0) + y(0) =

x
(0)
1

x
(0)
2
...

x
(0)
n

+

y
(0)
1

y
(0)
2
...

y
(0)
n

Step 5:
Once we have calculated x(1), we repeat the process again, until x(k) converges to x. This
indicates we have reached the solution to F(x) = 0, where x is the solution to the system.

Remark 3.3. When a set of vectors converges, the norm ||x(k) − x(k−1)|| = 0. This
means that

||x(k) − x(k−1)|| =
√

(x
(k)
1 − x

(k−1)
1)2 + · · ·+ (x

(k)
n − x(k−1)n)2 = 0

§3.2 Convergence of Newton’s Method

Newton’s method converges quadratically, (refer to definition 2.10). When carrying
out this method the system converges quite rapdily once the approximation is close to
the actual solution of the nonlinear system. This is seen as a advantage because Newton’s
method may require less iterations, compared to another method with a lower rate of
convergence, to reach the solution. However, when the system does not converge, this is
an indicator that an error in the computations has occured, or a solution may not exist.

In the following proof, we will prove that Newton’s method does indeed converge quadrat-
ically.

Proof of Newton’s Method Quadratic Convergence

In order for Newton’s method to converge quadratically, the initial vector x(0) must
be sufficiently close to a the solution of the system F=0, which is denoted by x. As well,
the Jacobian matrix at must not be singular, that is, J(x)−1 must exist. The goal of this
proof is to show that

||x(k+1) − x||
||x(k) − x||2

= λ

where λ denotes a positive constant.
We have that

||e(k+1)|| = ||x(k+1) − x|| = ||x(k) − J(x(k))−1F(x(k))− x||.

Chapter 3. Newton’s Method 10

If we set ||e(k)|| = ||x(k) − x|| then have we that

||e(k) − J(x(k))−1F(x(k))||. (3.6)

Next, we want to define the second-order Taylor series as

F(x(k)) ≈ F(x) + Je(k) +
1

2
(e(k))TH(e(k))

where J = J(x(k)) and H is the Hessian tensor, which is similiar to the Hessian matrix,

i.e. H =
[

∂2f
∂xi∂xj

]
ij

, when F = f . We then have to multiply each side of the Taylor’s series

by J−1, which yields

J−1(F(x(k))) ≈ J−1
[
F(x) + Je(k) +

1

2
(e(k))TH(e(k))

]
= e(k) +

J−1

2
(e(k))TH(e(k)) (3.7)

Using (3.6) and (3.7) we obtain our last result such that,

||x(k+1) − x|| = ||e(k+1)||

=

∣∣∣∣∣∣∣∣J−12
(e(k))TH(e(k))

∣∣∣∣∣∣∣∣
≤ ||J

−1||||H||
2

||e(k)||2.

Thus is shows that Newton’s method converges quadratically. �

§3.3 Advantages and Disadvantages of Newton’s Method

One of the advantages of Newton’s method is that its not too complicated in form
and it can be used to solve a variety of problems. The major disadvantage associated
with Newton’s method, is that J(x), as well as its inversion has, to be calculated for
each iteration. Calculating both the Jacobian matrix and its inverse can be quite time
consuming depending on the size of your system is. Another problem that we may be
challenged with when using Newton’s method is that it may fail to converge. If Newton’s
method fails to converge this will result in an oscillation between points.

§3.4 A Numerical Example of Newton’s Method
The following example is a numerical application of Newton’s method from [3].

Chapter 3. Newton’s Method 11

Example 3.4. Solve the following nonlinear system

3x1 − cos(x2x3)−
1

2
= 0,

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0,

when the initial approximation is

x(0) =

 0.1
0.1
−0.1

Solution

Step 1: We have our initial vector

x(0) =

 0.1
0.1
−0.1

 .
Step 2: Define F(x) and J(x):

F(x) =

 3x1 − cos(x2x3)− 1
2

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06
e−x1x2 + 20x3 + 10π−3

3

J(x) =

 3 x3 sin(x2x3) x2 sin(x2x3)
2x1 −162(x2 + 0.1) cosx3

−x2e−x1x2 −x1e−x1x2 20

Now that we have defined F(x) and J(x), we now want to calculate F(x(0)) and J(x(0)),
where x(0) = (0.1, 0.1,−0.1)ᵀ:

F(x(0)) =

 0.3− cos(−0.01)− 1
2

0.01− 3.24 + sin(−0.1) + 1.06
e(−0.01) − 2 + 10π−3

3

=

 −1.19995
−2.269833417
8.462025346

Chapter 3. Newton’s Method 12

and

J(x(0)) =

 3 (−0.1) sin(−0.01) 0.1 sin(−0.01)
0.2 −32.4 cos(−0.1)

−0.1e−0.01 −0.1e−0.01 20

=

 3 0.000999983 −0.000999983
0.2 −32.4 0.995004165

−0.099004984 −0.099004983 20

Step 3: Solve the system J(x(0))y(0) = −F(x(0)), using Gaussian Elimination: 3 0.000999983 −0.000999983
0.2 −32.4 0.995004165

−0.099004984 −0.099004983 20

 y

(0)
1

y
(0)
2

y
(0)
3

 = −

 −1.19995
−2.269833417
8.462025346

After solving the linear system above it yields the result

y(0) =

 0.40003702
−0.08053314
−0.42152047

Step 4: Using the result in Step 3, compute x(1) = x(0) + y(0):

x(1) =

 0.1
0.1
−0.1

+

 0.40003702
−0.08053314
−0.42152047

=

 0.50003702
0.01946686
−0.52152047

We can use the results of x(1) to find our next iteration x(2) by using the same procedure.

Step 5: If we continue to repeat the process, we will get the following results:

k x
(k)
1 x

(k)
2 x

(k)
3 ||x(k) − x(k−1)||

0 0.10000000 0.10000000 -0.10000000 –
1 0.50003702 0.01946686 -0.52152047 0.422
2 0.50004593 0.00158859 -0.52355711 0.0179
3 0.50000034 0.00001244 -0.52359845 0.00158
4 0.50000000 0.00000000 -0.52359877 0.0000124
5 0.50000000 0.00000000 -0.52359877 0

Chapter 3. Newton’s Method 13

From Remark 3.3 we know that when a set of vectors converges the norm

||x(k) − x(k−1)|| = 0.

Thus by our table above, the norm is equal to zero at the fifth iteration. This indicates
that our system F(x) has converged to the solution, which will be denoted by x.

Therefore, from our table of our results we know that

x =

 0.50000000
0.00000000
−0.52359877

is an approximation solution of F(x) = 0.

There are methods that are in the same family of Newton’s method, identified as
Quasi-Newton methods. A specific Quasi-Newton method, known as Broyden’s method,
will be examined in the next section.

CHAPTER 4

Broyden’s Method

In the last chapter, we examined the numerical method known as Newton’s method.
We established that one of the major disadvantages of this method was that that J(x) and
its inverse must be computed at each iteration. We, therefore want to avoid this problem.
There are methods known as Quasi-Newton methods, in which Burden and Faires in [3]
describe as methods that use an approximation matrix that is updated at each iteration
in place of the Jacobian matrix. This implies that the form of the iterative procedure
for Broyden’s method is almost identical to that used in Newton’s method. The only
exception being that an approximation matrix Ai is implemented instead of J(x). With
that said the following equation is derived:

x(i+1) = x(i) − A−1i F(x(i)).

This is defined as Broyden’s iterative procedure. .

In [3], Ai is defined as

Ai = Ai−1 +
yi − Ai−1si
||si||22

sti

yi = F(x(i))− F(x(i−1)) and si = x(i) − x(i−1). However, in Broyden’s method it involves
that computation A−1i , not Ai, which brings us to the next theorem.

Theorem 4.1. (Sherman-Morrison Forumula) If A is a nonsingular matrix and x
and y are vectors, then A+ xyt is nonsingular provided that ytA−1x 6= −1 and

(A+ xyt)−1 = A−1 − A−1xytA−1

1 + ytA−1x
.

The Sherman-Morrison Formula from [3], is a matrix inversion formula. It allows A−1i
to be computed directly using A−1i−1, rather than computing Ai and then its inverse at each

iteration. Now by using Theorem 4.1 and letting A = Ai−1, x = yi−Ai−1si
||si||22

, and y = si, as

well as using Ai as defined above we have that

A−1i =

(
Ai−1 +

yi − Ai−1si
||si||22

sti

)−1
14

Chapter 4. Broyden’s Method 15

= A−1i−1 −
A−1i−1

(
Ai−1 + yi−Ai−1si

||si||22
sti

)
A−1i−1

1 + stiA
−1
i−1

(
yi−Ai−1si
||si||22

)
= A−1i−1 −

(A−1i−1yi − si)s
t
iA
−1
i−1

||si||22 + stiA
−1
i−1yi − ||si||22

This leaves us with

A−1i = A−1i−1 +
(si − A−1i−1yi)stiA−1i−1

stiA
−1
i−1yi

.

We compute the inverse of the approximation matrix at each iteration with this equation.

We now desribe the steps of Broyden’s method:

Step 1:

Let x(0) = (x
(0)
1 , x

(0)
2 , ..., x

(0)
n) be the initial vector given.

Step 2:
Calculate F(x(0)).

Step 3:
In this step we compute A−10 . Because we do not have enough information to com-
pute A0 directly, Broyden’s method permits us to let A0 = J(x(0)), which implies that
A−10 = J(x(0))−1.

Step 4:
Calculate x(1) = x(0) − A−10 F(x(0)).

Step 5:
Calculate F(x(1)).

Step 6:
Take F(x(0)) and F(x(1)) and calculate y1 = F(x(1)) − F(x(0)). Next, take the first two
iterations of x(i) and calculate s1 = x(1) − x(0).

Step 7:
Calculate st1A

−1
0 y1.

Step 8:

Compute A−11 = A−10 +
(

1
st1A
−1
0 y1

) [
(s1 − A−10 y1)s

t
1A
−1
0

]

Chapter 4. Broyden’s Method 16

Step 9:
Take A−11 that we found in Step 8, and calculate x(2) = x(1) − A−11 F(x(1)).

Step 10:
Repeat the process until we converge to x, i.e. when x(i) = x(i+1) = x. This will indicate
that we have reached the solution of the system (refer to Remark 3.3).

§4.2 Convergence of Broyden’s Method

Unlike Newton’s method, Broyden’s method as well as all of the Quasi-Newton meth-
ods converge superlinearlly. This means that

lim
i→∞

||x(i+1) − p||
||x(i) − p||

= 0

where p is the solution to F(x) = 0, and x(i) and x(i+1) are successive approximations
to p. This can be proved in a similar manner that proved the convergence of Newton’s
method.

§4.3 Advantages and Disadvantages Of Broyden’s Method

The main advantage of Broyden’s method is the reduction of computations. More specif-
ically, the way the inverse of the approximation matrix, A−1i can be computed directly
from the previous iteration, A−1i−1 reduces the number of computations needed for this
method in comparison to Newton’s Method. One thing that is seen as a disadvantage
of this Quasi-Newton method is that it does not converge quadratically. This may mean
that more iterations may be needed to reach the solution, when compared to the num-
ber of iterations Newton’s method requires. Another disadvantage of Broyden’s method
is that as described in [3] by Burden and Faires, is that it is not self-correcting. This
means that in contrast to Newton’s method, it does not correct itself for round off errors
with consecutive interations. This may cause only a slight inaccuracy in the iterations
compared to Newton’s, but the final iteration will be the same.

Now that we have taken a look at numerical methods for solving multivariable non-
linear equations, in the next section we will focus on a numerical method that is used to
nonlinear boundary value problems for ordinary differential equations.

CHAPTER 5

Finite-Difference Method

In this section, we will examine a numerical method that is used to approximate
the solution of a boundary-value problem. We will focus on a two-point boundary-value
problem with a second order differential equation which takes the form

y′′ = f(x, y, y′), a ≤ x ≤ b,

y(a) = α, y(b) = β

where f is a function, a and b are the end points, and y(a) = α and y(b) = β are the
boundary conditions.

Example 5.1. The following example is of a two-point boundary value problem with
a second order differential equation from [4]:

y′′ =
1

8
(32 + 2x3 − yy′), 1 ≤ x ≤ 3

y(1) = 17, y(3) =
43

3

Before we can solve a boundary value problem we have to be sure it has a unique
solution. The following theorem from [4] ensures that a solution indeed does exist and is
unique.

Theorem 5.2. Suppose the function f in the boundary-value problem

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y(b) = β

is continuous on the set

D = ((x, y, y′)|a ≤ x ≤ b,−∞ < y <∞,−∞ < y′ <∞)

and that the partial derivatives fy and fy′ are also continuous in D. If

(1) fy(x, y, y
′) > 0 for all (x, y, y′) ∈ D, and

(2) a constant M exists with |fy′(x, y, y′)| ≤M for all (x, y, y′) ∈ D,

17

Chapter 5. Finite-Difference Method 18

then the boundary-value problem has a unique solution.

The numerical method we will be looking at is the Finite-Difference method. This method
can be used to solve both linear and nonlinear ordinary differential equations. We will
just survey the nonlinear Finite-Difference method.

A nonlinear boundary-value problem takes on the form of

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y(b) = β

In order for the Finite-Difference method to be carried out we have to assume f satisfies
the following conditions as described in [4]:

(1) f and the partial derivatives fy and fy′ are all continuous on

D = ((x, y, y′)|a ≤ x ≤ b,−∞ < y <∞,−∞ < y′ <∞)

(2) fy(x, y, y
′) ≥ δ on D,for some δ > 0.

(3) Constants k and L exist, with

k = max
(x,y,y′)∈D

|fy(x, y, y′)|, and L = max
(x,y,y′)∈D

|fy′(x, y, y′)|

With f satisfying these conditions, Theorem 5.2 implies that a unique solution exists.

When solving a linear boundary-value problem using the Finite-Difference, the second-
order boundary-value equation

y′′ = p(x)y′ + q(x)y + r(x)

is expanded using y in a third Taylor polynomial about xi evaluated at xi+1 and xi−1,
where a formula called the centered-difference formula for both y′′(xi) and y′(xi) is derived.
Burden and Faires in [4] define the centered-difference formula for y′′(xi) and y′(xi) as
follows

y′′(xi) =
1

h2
[y(xi+1)− 2y(xi) + y(xi−1)]−

h2

12
y(4)(ξi) (5.1)

for some ξi in (xi−1, xi+1), and

y′(xi) =
1

2h
[y(xi+1)− y(xi−1)]−

h2

6
y′′′(ηi) (5.2)

for some ηi in (xi−1, xi+1).

Now we can begin to form the procedure for the Finite-Difference method.

Step 1:
We first want to divide the interval [a, b] into (N + 1) equal subintervals which gives us

h =
(b− a)

(N + 1)

Chapter 5. Finite-Difference Method 19

with end points at xi = a+ ih for i = 0, 1, 2, ..., N + 1.

Step 2:
Next we will take

y′′(xi) = f(xi, y(xi), y
′(xi))

and substitute equations (5.1) and (5.2) into it. This will give us:

y(xi+1)− 2y(xi) + y(xi−1)

h2
= f

(
xi, y(xi),

y(xi+1)− y(xi−1)

2h
− h2

6
y′′′(ηi)

)
+
h2

12
y(4)(ξi)

(5.3)

for some ξi and ηi in the interval (xi−1, xi+1).

Step 3:
The Finite-Difference method results by using (5.3), and the boundary conditions to de-
fine:

w0 = α, wN+1 = β

and

−wi+1 − 2wi + wi−1
h2

+ f

(
xi, wi,

wi+1 − wi−1
2h

)
= 0

for each i = 1, 2, ..., N .

Step 4:
Once we define the boundary conditions in Step 3, an N ×N nonlinear system, F (w), is
produced from the Finite Difference method defined in [4] as:

2w1 − w2 + h2f

(
x1, w1,

w2 − α
2h

)
− α = 0

−w1 + 2w2 − w3 + h2f

(
x2, w2,

w3 − w1

2h

)
= 0

... (5.4)

−wN−2 + 2wN−1 − wN + h2f

(
xN−1, wN−1,

wN − wN−2
2h

)
= 0

−wN−1 + 2wN + h2f

(
xN , wN ,

β − wN−1
2h

)
− β = 0

Chapter 5. Finite-Difference Method 20

Step 5:
We can take F(w), and implement Newton’s method to approximate the solution to this

system. We can do this by taking an initial approximation w(0) = (w
(0)
1 , w

(0)
2 , ..., w

(0)
N)t,

F(w(0)) and defining the Jacobian matrix as follows:

J(w1, w2, ..., wN)ij = −1 +
h

2
fy′

(
xi, wi

wi+1 − wi−1
2h

)
, for i = j − 1 and j = 2, ..., N

J(w1, w2, ..., wN)ij = 2 + h2fy

(
xi, wi

wi+1 − wi−1
2h

)
, for i = j and j = 1, ..., N

J(w1, w2, ..., wN)ij = −1− h

2
fy′

(
xi, wi

wi+1 − wi−1
2h

)
, for i = j + 1 and j = 1, ..., N − 1

(5.5)

where w0 = α and wN+1 = β.

Remark 5.3. We can find the initial approximation w(0) by using the following equa-
tion equation

w(0) = α +
β − α
b− a

(xi − a)

where xi = a+ ih for i = 1, 2, ..., N

In the Finite-Difference method, J(w1, w2, ..., wN) is tridiagonal with ijth entry. This
means that there are non-zero entries on the main diagonal, non-zero entries on the di-
agonal directly below the main diagonal, and there are non-zero entries on the diagonal
directly above the main diagonal.

If we look at Step 3 of Newton’s method in Chapter 3, we solve the system J(x)y = −F(x).
Now for the Finite Difference method we solve a similiar system that is

J(w1, ..., wN)(v1, ..., vn)t = −F(w1, w2, ..., wN)

where w
(k)
i = w

(k−1)
i + vi, for each i = 1, 2, ..., N . However, we do not use Gaussian

Elimination to solve this system. Since the Jacobian matrix is tridiagonal, we can solve
it using Crout LU factorization for matrices such that J(w) = LU .

Chapter 5. Finite-Difference Method 21

Crout LU Factorization
Since J(w) is tridiagonal, it takes on the form:

J(w) =

a11 a12 0 · · · · · · · · · · · · 0
a21 a22 a23 0 · · · · · · · · · 0
0 a32 a33 a34 0 · · · · · · 0
... 0

. 0 · · · 0
...

... 0
. 0 0

...
...

... 0
. 0

...
...

...
... 0

. ai−1,j
0 0 0 0 0 0 ai,j−1 aij

.

Crout’s LU Factorization factors the matrix above into two triangular matrices L and U .
These two matrices can be found in the form:

L =

l11 0 0 · · · · · · · · · · · · 0
l21 l22 0 · · · · · · · · · · · · 0
0 l32 l33 0 · · · · · · · · · 0
... 0

. 0 · · · 0
...

... 0
. 0 0

...
...

... 0
. 0

...
...

...
... 0

. 0
0 0 0 0 0 0 li,j−1 lij

.

and

U =

1 u12 0 · · · · · · · · · · · · 0
0 1 u23 0 · · · · · · · · · 0
0 0 1 u34 0 · · · · · · 0
... 0

. 0 · · · 0
...

... 0
. 0 0

...
...

... 0
. 0

...
...

...
... 0

. ui−1,j
0 0 0 0 0 0 0 1

.

Once we have expressed our original matrix J(w) in terms of L and U , we need to compute
the entries of each of these matrices. This procedure involves:

(1) Computing the first column of L, where li1 = ai1

(2) Computing the first row of U, where u1j =
a1j
l11

Chapter 5. Finite-Difference Method 22

(3) Alternately computing the columns of L and the rows of U, where

lij = aij −
j−1∑
k=1

likukj, for j ≤ i, i = 1, 2, ..., N

uij =
aij −

∑i−1
k=1 likukj
lii

, for i ≤ j, j = 2, 3, ..., N

Once the entries of the LU matrices are determined, we want to solve the system
J(w1, ..., wN)(v1, ..., vn)t = −F(w1, w2, ..., wN).

We solve this system using the following procedure:

(1) Set up and solve the system Lz = F(w(k)), where z ∈ Rn.

(2) Set up and solve the system Uv = z. (Remember v = (v1, ..., vn)t)

Once we are able to obtain v, we can proceed with computing w
(k)
i = w

(k−1)
i + vi, and

thus repeating Newton’s method for the next iteration.

As a result once we can obtain the initial approximation w(0) and form a N × N
system, we can follow the iterative process for Newton’s method described in Chapter
3, with the addition of Crout’s LU factorization in place of the Gaussian Elimination,
to solve the boundary-value probem, i.e. the values of y(xi), where xi = a + ih and
i = 0, 1, 2, ..., N + 1. This implies that the procedure for the Finite-Difference method
consists of converting the boundary-value problem into a nonlinear algebraic system. Once
a nonlinear algebraic system is formulated, we can use Newton’s method to solve this sys-
tem.

In the next section we will take a numerical example and solve a nonlinear boundary-
value problem using the computer program Matlab.

CHAPTER 6

Matlab Application

In this section, we will solve the boundary value problem of nonlinear ordinary differ-
ential equation from Example 5.1:

y′′ =
1

8
(32 + 2x3 − yy′), 1 ≤ x ≤ 3

y(1) = 17, y(3) =
43

3

with h = 0.1

There are a few things that we have to compute before we can solve this problem us-
ing Matlab.

Step 1:
Since we know that h = 0.1, this means that our interval [1, 3] is divided into N + 1 =
19 + 1 = 20 equal subintervals. We also know from Chapter 5, that xi = a + ih, where
i = 0, 1, 2, ..., N + 1. This implies that our values of xi are as follows (refer to next page):

23

Chapter 6. Matlab Application 24

i xi

0 1.0
1 1.1
2 1.2
3 1.3
4 1.4
5 1.5
6 1.6
7 1.7
8 1.8
9 1.9
10 2.0
11 2.1
12 2.2
13 2.3
14 2.4
15 2.5
16 2.6
17 2.7
18 2.8
19 2.9
20 3.0

Step 2:
Next we will define the boundary conditions such that w0 = 17 and w20 = 14.333333.

Step 3:
Using the equation from Remark 5.3 we want to define our initial approximation w(0).
The equation yields the following results:

w(0) = (16.86666667, 16.73333333, 16.6, 16.46666667, 16.33333333,

16.2, 16.06666667, 15.9333333, 15.8, 15.66666667, 15.53333333,

15.4, 15.26666667, 15.13333333, 15, 14.86666667, 14.733333333,

14.6, 14.46666667)t

Step 4:
We know that N = 19, which implies that F (w) is 19× 19 nonlinear system. Using (5.4)

Chapter 6. Matlab Application 25

we get that F (w) is:

2w1 − w2 + 0.01

(
4 + 0.33275 +

w1(w2 − 17)

1.6

)
− 17 = 0

−w1 + 2w2 − w3 + 0.01

(
4 + 0.432 +

w2(w3 − w1)

1.6

)
= 0

−w2 + 2w3 − w4 + 0.01

(
4 + 0.5495 +

w3(w4 − w2)

1.6

)
= 0

−w3 + 2w4 − w5 + 0.01

(
4 + 0.686 +

w4(w5 − w3)

1.6

)
= 0

−w4 + 2w5 − w6 + 0.01

(
4 + 0.84375 +

w5(w6 − w4)

1.6

)
= 0

−w5 + 2w6 − w7 + 0.01

(
4 + 1.024 +

w6(w7 − w5)

1.6

)
= 0

−w6 + 2w7 − w8 + 0.01

(
4 + 1.22825 +

w7(w8 − w6)

1.6

)
= 0

−w7 + 2w8 − w9 + 0.01

(
4 + 1.458 +

w8(w9 − w7)

1.6

)
= 0

−w8 + 2w9 − w10 + 0.01

(
4 + 1.71475 +

w9(w10 − w8)

1.6

)
= 0

−w9 + 2w10 − w11 + 0.01

(
4 + 2 +

w10(w11 − w9)

1.6

)
= 0

−w10 + 2w11 − w12 + 0.01

(
4 + 2.31525 +

w11(w12 − w10)

1.6

)
= 0

−w11 + 2w12 − w13 + 0.01

(
4 + 2.662 +

w12(w13 − w11)

1.6

)
= 0

−w12 + 2w13 − w14 + 0.01

(
4 + 3.04175 +

w13(w14 − w12)

1.6

)
= 0

−w13 + 2w14 − w15 + 0.01

(
4 + 3.456 +

w14(w15 − w13)

1.6

)
= 0

−w14 + 2w15 − w16 + 0.01

(
4 + 3.90625 +

w15(w16 − w14)

1.6

)
= 0

−w15 + 2w16 − w17 + 0.01

(
4 + 4.394 +

w16(w17 − w15)

1.6

)
= 0

−w16 + 2w17 − w18 + 0.01

(
4 + 4.92075 +

w17(w18 − w16)

1.6

)
= 0

−w17 + 2w18 − w19 + 0.01

(
4 + 5.488 +

w18(w19 − w17)

1.6

)
= 0

−w18 + 2w19 + 0.01

(
4 + 6.09725 +

w19(14.333333− w18)

1.6

)
− 14.333333 = 0

Chapter 6. Matlab Application 26

Step 5:
Lastly we will define J(w) using (5.5):

J(w) =

2 + 0.01
(
w2−17
1.6

)
−1 + 0.05

(
1
8
w1

)
0 · · · · · · · · · · · · 0

−1− 0.05
(
1
8
w2

)
2 + 0.01

(
w3−w1

1.6

)
−1 + 0.05

(
1
8
w2

)
0 · · · · · · · · · 0

0 a32 a33 a34 0 · · · · · · 0
... 0

. 0 · · · 0
...

... 0
. 0 0

...
...

... 0
. 0

...
...

...
... 0

. ai−1j
0 0 0 0 0 0 ai,j−1 aij

.

Now that we have defined each of the components, w(0), F(w), and J(w), we can in-
put this data into our Matlab program (See Appendix).

The following data are the results from our output:

xi wi w(0) w(1) w(2) w(3) w(4) w(5)

1.0 w0 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000
1.1 w1 16.8667 16.7641 16.7606 16.7605 16.7605 16.7605
1.2 w2 16.7333 16.5212 16.5135 16.5134 15.5134 16.5134
1.3 w3 16.6000 16.2714 16.2859 16.2859 16.2589 16.2589
1.4 w4 16.4667 16.0152 15.9974 15.9974 15.9974 15.9974
1.5 w5 16.3333 15.7532 15.7299 15.7298 15.7298 15.7298
1.6 w6 16.2000 15.4867 15.4578 15.4577 15.4577 15.4577
1.7 w7 16.0667 15.2175 15.1831 15.1829 15.1829 15.1829
1.8 w8 15.9333 14.9477 14.9085 14.9083 14.9083 14.9083
1.9 w9 15.8000 14.6808 14.6377 14.6375 14.6375 14.6375
2.0 w10 15.6667 14.4208 14.3752 14.3750 14.3750 14.3750
2.1 w11 15.5333 14.1733 14.1269 14.1266 14.1266 14.1266
2.2 w12 15.4000 13.9449 13.8997 13.8994 13.8993 13.8993
2.3 w13 15.2667 13.7443 13.7022 13.7018 13.7018 13.7018
2.4 w14 15.1333 13.5820 13.5448 13.5443 13.5443 13.5443
2.5 w15 15.0000 13.4710 13.4397 13.4392 13.4391 13.4391
2.6 w16 14.8667 13.4271 13.4017 13.4010 13.4010 13.4010
2.7 w17 14.7333 13.4694 13.4483 13.4475 13.4475 13.4475
2.8 w18 13.6209 13.6008 13.5999 13.5999 13.5999 13.5999
2.9 w19 13.9089 13.8854 13.8844 13.8843 13.8843 13.8843
3.0 w20 14.3333 14.3333 14.3333 14.3333 14.3333 14.3333

Chapter 6. Matlab Application 27

From the table above we can observe that ||w(5) − w(4)|| = 0. This indicates that our
sequence of iterates has converged. Thus, the solution to our boundary value problem of
the nonlinear ordinary differential equation is

w = (17.0000, 16.7605, 16.5134, 16.2589, 15.9974,

15.7298, 15.4577, 15.1829, 14.9083, 14.6375,

14.3750, 14.1266, 13.8993, 13.7018, 13.5443,

13.439113.401013.447513.599913.8843)t. (6.1)

The significance of this answer, is that it gives the approximation to the solutions of
y(xi), where xi = a+ ih and i = 0, 1, 2, ..., N + 1. Each numerical value in (6.1) gives the
corresponding approximation of y(x0), y(x1), y(x2), ..., y(xN+1).

CHAPTER 7

Conclusion

From this paper, it is safe to say that numerical methods are a vital strand of math-
ematics. They are a powerful tool in not only solving nonlinear algebraic equations with
one variable, but also systems of nonlinear algebraic equations. Even equations or systems
of equations that may look simplistic in form, may in fact need the use of numerical meth-
ods in order to be solved. Numerical methods are also influential in solving for boundary
value problems of nonlinear ordinary differential equations. Solving for boundary vaulue
problems of linear ordinary differential equations can be difficult enough. Thus, it would
be nearly impossible to solve boundary value problems of nonlinear ordinary differential
equations without implementing numerical methods. In this paper, we only examined
three numerical methods, however, there are several other ones that we have yet to take
a closer look at.

The main results of this paper can be highlighted in to two different areas: Conver-
gence and the role of Newton’s method. With regards to convergence, we can summarize
that a numerical method with a higher rate of convergence may reach the solution of a
system in less iterations in comparison to another method with a slower convergence. For
example, Newton’s method converges quadratically and Broyden’s method only converges
superlinerally. The implication of this would be that given the exact same nonlinear sys-
tem of equations denoted by F, Newton’s method would arrive at the solution of F=0 in
less iterations compared to Broyden’s method.

The second key result from this paper, is the significance of Newton’s method in nu-
merical methods. In the case of both Broyden ’s method and the Finite-Difference method,
Newton’s method is incorporated into each of their algorithms. Broyden’s method had
an almost identical algorithm as Newton’s method, with the exception of the use of ap-
proximation matrix. The Finite-Difference method implemented Newton’s method once
the boundary value problem was converted into a nonlinear algebraic system. Not only
was Newton’s method a part of these methods, but also other various numerical methods
that I had come across. This demonstrates the diversity that Newton’s method possesses;
it can be applied to many problems. This mean we can make a conjecture that Newton’s
method is a notable process in the area of numerical methods.

28

Chapter 7. Conclusion 29

What I would like to do next in regards to numerical methods, is that I would
like to explore more methods that are used to solve boundary-value problems of nonlinear
ordinary differential equations. In this paper I briefly looked at one, but I would like to
focus more of my attention on these types of iterative methods. For example, the Shoot-
ing Method is definitely one method I would like to take a closer look at.

After all the material examined in this paper, we can conclude that numerical methods
are a key component in the area of nonlinear mathematics.

Appendix

The following are the Matlab functions that were used solve the boundary value prob-
lem in Chapter 6.

File Name: Newton sys.m

function w = Newton sys(F, JF, w0, tol, max it)
% Solve the nonliner system F(w)=0 using Newton’s Method
% vectors w and w0 are row vectors (for display purposes)
% function F returns a column vector , [fl(w), ..fn(w)]’
% stop if norm of change in solution vector is less than tol
% solve JF(w) y = - F(w) using Matlab’s ”backlash operator”
% v = - feval(JF, wold) feval(F, wold);
% the next approximate solution is w new = wold + v’;

F=’Newton sys F’;
JF=’Newton sys JF’;
w0=[16.86666667, 16.73333333, 16.6, 16.46666667, 16.33333333, 16.2,
16.06666667, 15.9333333, 15.8, 15.66666667, 15.53333333, 15.4,
15.26666667, 15.13333333, 15, 14.86666667, 14.733333333, 14.6, 14.46666667];
tol=0.00001;
max it=5000;

w old = w0;
disp([0 w old]);
iter = 1;
while (iter ≤= max it)
v = - feval(JF, w old) feval(F, w old);
w new = w old + v’;
dif = norm(w new - w old);
disp([iter w new dif]);
if dif ≤ = tol
w = w new;
disp(’Newton method has converged’)

30

Chapter 7. Conclusion 31

return;
else
w old = w new;
end
iter = iter + 1;
end
disp(’Newton method did not converge’)
w = w new;

File Name: Newton sys F.m

function y = Newton sys F(w)
% test function used for Newton method for a system
y = [(2*w(1) - w(2) + 0.01*(4+0.33275+(w(1)*(w(2)-17)/1.6)) - 17)
(-w(1) + 2*w(2) - w(3) + 0.01*(4+0.432+(w(2)*(w(3)-w(1))/1.6)))
(-w(2) + 2*w(3) - w(4) + 0.01*(4+0.54925+(w(3)*(w(4)-w(2))/1.6)))
(-w(3) + 2*w(4) - w(5) + 0.01*(4+0.686+(w(4)*(w(5)-w(3))/1.6)))
(-w(4) + 2*w(5) - w(6) + 0.01*(4+0.84375+(w(5)*(w(6)-w(4))/1.6)))
(- w(5) + 2*w(6) - w(7) + 0.01*(4+1.024+(w(6)*(w(7)-w(5))/1.6)))
(-w(6) + 2*w(7) - w(8) + 0.01*(4+1.22825+(w(7)*(w(8)-w(6))/1.6)))
(-w(7) + 2*w(8) - w(9) + 0.01*(4+1.458+(w(8)*(w(9)-w(7))/1.6)))
(-w(8) + 2*w(9) - w(10) + 0.01*(4+1.71475+(w(9)*(w(10)-w(8))/1.6)))
(-w(9) + 2*w(10) - w(11) + 0.01*(4+2+(w(10)*(w(11)-w(9))/1.6)))
(-w(10) + 2*w(11) - w(12) + 0.01*(4+2.31525+(w(11)*(w(12)-w(10))/1.6)))
(-w(11) + 2*w(12) - w(13) + 0.01*(4+2.662+(w(12)*(w(13)-w(11))/1.6)))
(-w(12) + 2*w(13) - w(14) + 0.01*(4+3.04175+(w(13)*(w(14)-w(12))/1.6)))
(-w(13) + 2*w(14) - w(15) + 0.01*(4+3.456+(w(14)*(w(15)-w(13))/1.6)))
(-w(14) + 2*w(15) - w(16) + 0.01*(4+3.90625+(w(15)*(w(16)-w(14))/1.6)))
(-w(15) + 2*w(16) - w(17) + 0.01*(4+4.394+(w(16)*(w(17)-w(15))/1.6)))
(-w(16) + 2*w(17) - w(18) + 0.01*(4+4.92075+(w(17)*(w(18)-w(16))/1.6)))
(-w(17) + 2*w(18) - w(19) + 0.01*(4+5.488+(w(18)*(w(19)-w(17))/1.6)))
(-w(18) + 2*w(19) + 0.01*(4+6.09725+(w(19)*(14.333333-w(18))/1.6)) - 14.333333)];

File Name: Newton sys JF.m

function y = Newton sys JF(w)
% test function used for Newton method for a system
% find JF and write it down y= the matrix JF
y =[2+0.01*((w(2)-17)/1.6) -1+0.05*(0.125*w(1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; -1-
0.05*(0.125*w(2)) 2+0.01*((w(3)-w(1))/1.6) -1+0.05*(0.125*w(2)) 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0; 0 -1-0.05*(0.125*w(3)) 2+0.01*((w(4)-w(2))/1.6) -1+0.05*(0.125*w(3)) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0; 0 0 -1-0.05*(0.125*w(4)) 2+0.01*((w(5)-w(3))/1.6) -1+0.05*(0.125*w(4))

Chapter 7. Conclusion 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 -1-0.05*(0.125*w(5)) 2+0.01*((w(6)-w(4))/1.6) -
1+0.05*(0.125*w(5)) 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 -1-0.05*(0.125*w(6)) 2+0.01*((w(7)-
w(5))/1.6) -1+0.05*(0.125*w(6)) 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 -1-0.05*(0.125*w(7))
2+0.01*((w(8)-w(6))/1.6) -1+0.05*(0.125*w(7)) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 -
1-0.05*(0.125*w(8)) 2+0.01*((w(9)-w(7))/1.6) -1+0.05*(0.125*w(8)) 0 0 0 0 0 0 0 0 0
0; 0 0 0 0 0 0 0 -1-0.05*(0.125*w(9)) 2+0.01*((w(10)-w(8))/1.6) -1+0.05*(0.125*w(9))
0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(10)) 2+0.01*((w(11)-w(9))/1.6) -
1+0.05*(0.125*w(10)) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(11)) 2+0.01*((w(12)-
w(10))/1.6) -1+0.05*(0.125*w(11)) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(12))
2+0.01*((w(13)-w(11))/1.6) -1+0.05*(0.125*w(12)) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 -1-
0.05*(0.125*w(13)) 2+0.01*((w(14)-w(12))/1.6) -1+0.05*(0.125*w(13)) 0 0 0 0 0; 0 0 0 0
0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(14)) 2+0.01*((w(15)-w(13))/1.6) -1+0.05*(0.125*w(14))
0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(15)) 2+0.01*((w(16)-w(14))/1.6) -
1+0.05*(0.125*w(15)) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(16)) 2+0.01*((w(17)-
w(15))/1.6) -1+0.05*(0.125*w(16)) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(17))
2+0.01*((w(18)-w(16))/1.6) -1+0.05*(0.125*w(17)) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1-0.05*(0.125*w(18)) 2+0.01*((w(19)-w(17))/1.6) -1+0.05*(0.125*w(18)); 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1-0.05*(0.125*w(19)) 2+0.01*(14.333333-w(18)/1.6)] ;

The following are the actual Matlab results that were outputted from the data:

Columns 1 through 11
0 16.8667 16.7333 16.6000 16.4667 16.3333 16.2000 16.0667 15.9333 15.8000 15.6667
Columns 12 through 20
15.5333 15.4000 15.2667 15.1333 15.0000 14.8667 14.7333 14.6000 14.4667
Columns 1 through 11
1.0000 16.7641 16.5212 16.2714 16.0152 15.7532 15.4867 15.2175 14.9477 14.6808 14.4208
Columns 12 through 21
14.1733 13.9449 13.7443 13.5820 13.4710 13.4271 13.4694 13.6209 13.9089 4.6561
Columns 1 through 11
2.0000 16.7606 16.5135 16.2589 15.9974 15.7299 15.4578 15.1831 14.9085 14.6377 14.3752
Columns 12 through 21
14.1269 13.8997 13.7022 13.5448 13.4397 13.4017 13.4483 13.6008 13.8854 0.1377
Columns 1 through 11
3.0000 16.7605 16.5134 16.2589 15.9974 15.7298 15.4577 15.1829 14.9083 14.6375 14.3750
Columns 12 through 21
14.1266 13.8994 13.7018 13.5443 13.4392 13.4010 13.4475 13.5999 13.8844 0.0020
Columns 1 through 11
4.0000 16.7605 16.5134 16.2589 15.9974 15.7298 15.4577 15.1829 14.9083 14.6375 14.3750
Columns 12 through 21
14.1266 13.8993 13.7018 13.5443 13.4391 13.4010 13.4475 13.5999 13.8843 0.0001

Chapter 7. Conclusion 33

Columns 1 through 11
5.0000 16.7605 16.5134 16.2589 15.9974 15.7298 15.4577 15.1829 14.9083 14.6375 14.3750
Columns 12 through 21
14.1266 13.8993 13.7018 13.5443 13.4391 13.4010 13.4475 13.5999 13.8843 0.0000
Newton method has converged
ans =
Columns 1 through 11
16.7605 16.5134 16.2589 15.9974 15.7298 15.4577 15.1829 14.9083 14.6375 14.3750 14.1266
Columns 12 through 19
13.8993 13.7018 13.5443 13.4391 13.4010 13.4475 13.5999 13.8843

Bibliography

[1] Atkinson, K.E. (1978). An Introduction to Numerical Analysis. Nonlinear Systems of Equations (pp.

88-95). Canada: John Wiley & Sons.

[2] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1988). Numerical Recipes in C.

Newton-Raphson Method for Nonlinear Systems of Equations. (pp.286-289). New York: Cambridge

University Press.

[3] Burden, R.L., Faires, J.D (2005). Numerical Analysis. Numerical Solutions of Nonlinear Systems of

Equations, (pp. 597-640). Belmount: Thomson Brooks/Cole.

[4] Burden, R.L., Faires, J.D (2005). Numerical Analysis. Boundary-Value Problems for Ordinary Dif-

ferential Equations, (pp. 641-685). Belmount: Thomson Brooks/Cole

[5] Burden, R.L., Faires, J.D (2005). Numerical Analysis. Special Types of Matrices, (pp. 389-413).

Belmount: Thomson Brooks/Cole

3, 7, 11, 15, 17

18, 19, 20

34

	Abstract
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Preliminaries
	Chapter 3. Newton's Method
	Chapter 4. Broyden's Method
	Chapter 5. Finite-Difference Method
	Chapter 6. Matlab Application
	Chapter 7. Conclusion
	Appendix
	Bibliography

